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Abstract, Using Feynman’s polygonal paths for path integrals, the exact evaluation of the 
propagator for a time-dependent harmonic oscillator with a time-dependent inverse square 
potential becomes possible. The propagator at and beyond caustics is then evaluated by 
including the Maslov correction factor. Finally, we obtain the wavefunctions from the 
propagator obtained. 

In this paper we consider a harmonic oscillator with time-dependent mass M( t )  and 
frequency w (  t )  moving in one dimension under a time-dependent inverse square 
potential. The Lagrangian is given by 

L(X, X, 1 )  = f M ( t ) ( x 2 - ~ ’ ( t ) x 2 ) - g ( t ) / x 2  (1) 

where M ( t ) g ( t ) >  -h2/8  to avoid ‘the fall to the centre’ (Landau and Lifshitz 1958). 
We shall restrict ourselves to studying the region x 3 0 only since the solution in this 
region can be extended to x < 0 by using analytic continuation. For later convenience, 
we set r’ = r(  t ’ ) ,  r” = r(  1”) and rI = r(  t ’ +  j e )  ( E  = ( t ” -  t ’ ) /  N )  for any function r(  t )  of 
time 1. 

Using Feynman’s polygonal paths (Feynman and Hibbs 1965), the short-time action 
can be written as 

E Eg/ 
p i x /  ( xj - ~ ~ - 1 ) ~  - - M .  * -- M. 

S,( ~ ~ - 1 ,  x,) = 
2 E  2 xis- 1 

M,x,x, - 1 + h ’( v,’ - i )  
2 - (- E 2 M,xjx, -, 

with v, = f( 1 + 8M,g,/ h2)1’2. Applying the asymptotic form 
function 

( 2 )  

of the modified Bessel 

for small E ,  we have 

(4) 
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Therefore the propagator is of the form 

~ ( x ” ,  t ” ;  X I ,  t ’ )  = (X‘X’’ ) ’ ’~  Iim (-iP”) e ~ p [ f i ( ~ ~ x ” + ~ ” x ” ~ ) ]  
N-W 

with Pj = M j /  h~ and a, = Pi( 1 - wje2/2). 
Unfortunately, equation ( 5 )  cannot be evaluated exactly at present. Here we 

consider only the case of M (  t ) g (  t )  = K (constant), or v = vj = f (  1 + 8 K  / h 2 ) ” 2 .  By 
repeatedly using the well known integral (Peak and Inomata 1969) 

lox exp(irx2)1,(-ipx)I,(-iqx)x d x  = (i/2r) exp 
4r 

for Re( r )  > 0 and Re( v )  > -1, we obtain from equation (5) the propagator of the form 

K(x” ,  t”;  x’, t ’ )  = -i(x’x‘’)’’2 lim RN exp[i( PNx”+ QNx”’)]Z,(-iRNx’x’‘) (7) N-m 

By defining 4 = 2 -y,/PJ, we obtain from ( 1  1) the following recurrence relation: 

8, = 2( 1 - WjE2/2) - l/G,-l. (13) 
Now by assuming that Cr, = a,+,/aJ, we have 

(a,,, -2a, + = - ( M I /  - l)aJ-,/e. (14) 
In the limit of E + 0, the above recurrence relation reduces to the following differential 
equation: 

(15) U +[k( t ) /  M (  t ) ] d  + w ’ ( t ) a  = 0 a ’ = 0 ,  U ‘ =  1. 

We can also rewrite equations (8)-( 11) in terms of a, as 
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and 

Q N  = ( P N  /2)(1 - M’IaN - I /  MN - l a N  ). 

Taking E + 0, we obtain the following limit values: 

lim RN = M’b’/ha” 
F -0 

and 

lim PN = (M’ /2h)  lim 

(21) 

(22) 

F - 0  F - 0  

where b = ( a / & ) { l - ( & / M ‘ )  j : . [ M ( t l / a 2 ]  dt} satisfies 

6+ [&f( t ) /  M (  t ) ] b  + U’ (  t ) b  = 0 b‘= 1, b’=0. 

Substituting (19)-(21) into (7) ,  we obtain the propagator 

K(x”,  t”; x’, t’) = [ - i M ’ ( ~ ‘ x ” ) ~ / ~ / h a ’ ’ ]  

x ex p[ ( i/ 2 ha ”) ( M ’ 6 ” ~ ’ ~  + M “ b  “x”’ ) ] I, ( - i M ’x ’ x ”/ ha ”) . 

a = ( v ’ s / v )  sin(p - p ’ )  

(23) 

(24) 

It can easily be shown that 

and 

and 

s’/i = 1 /i‘= 1. (27) 
With the help of (24)-(27), the propagator (23) becomes 

K(x”, t“, x‘; t’) = [( M’M“/i’/i“x’x“)1/2/ih sin 41 exp((i/2h)[(M’/i’xf2 
+ MIr/itfXrt2) 4 + ( &f‘xt2 - &f”x”’)/2+ M’fjftxfr2/sft]} 

x Z , [ ( M ’ M ” ~ ’ j i ” ) ’ / 2 x ‘ x ” / i h  sin 41 ( O <  4 < .rr) (28) 
with 4 = p”-  p’ .  

Now, by considering (i) the number of zeros of a ( t )  in [t’, t ” ]  (Truman 1978), (ii) 
that the wavefunction is continuous at the points ( n  + 1/2).rr, and (iii) Z u ( - i l )  = 
exp( -i v.rr)Zv(il) for 5 > 0 (Rezende 1984), we have the propagator beyond caustics: 

K(x” ,  t”; 4 # n.rr) = M+[(M’M”/i‘/i”x’x”)1’2/ih/sin 411 exp{(i/2h)[(Mf/i’x’’ 
+ M”/i”x”’) cot 4 + (&f’x’’ - & f ’ r ~ n 2 ) / 2  + Mffjt1xf12/s11]} 

x ZY[(M’Mt’/i’/ift)’/2x’x’’/ih( sin 411 (29) 
for ( n  - l).rr < 4 < n.rr ( n  being zero or any integer), where 

M4 =exp[-i.rr(v+l) ent(4/.rr)] 
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is the Maslov correction factor and ent(c$/T) stands for the greatest integer which is 
less than or equal to 4 /  7 ~ .  Taking sin 4 + 0, we finally obtain the propagator at caustics 
from (29): 

K(x", x'; 4 = nrr)=(M'M"ji'~")"2exp[-inrr(v+1)] 

x exp{(i /2h)[(h 'xf ' -  M " x " ~ ) / ~  

(31) + M,,S , ,x , ,2 / s , , ] }S[ (MJG') '" 'x ' - (M, ,G, , )1 /2x , , ]  

which can easily be reduced to S(x'-x") when 4+0, as it should be. 
For the case of h( 1 )  = 0 or M (  f )  = m, (28) becomes 

which is in agreement with (39) of Khandekar and Lawande (1975) ( j ' Z 0  in their 
case) and the result in the appendix of Goovaerts (1975). (29) and (31) are, respectively, 
equivalent to (4.17) and (4.18) of Rezende (1984) as we expect. For Y = f  (without an 
inverse square potential), we can also return to our previous results (Cheng 1985). 

Finally, by using the Hille-Hardy formula (Erdelyi 1953) 

(33) 

with U = exp( -2i4),  y = M"G"X"~/ h and z = M'G'xf2/ h, we obtain the wavefunctions 
from (29): 

where L.i( ) are the associated Laguerre functions and ent[(p - p ' ) / ~ ]  represents the 
greatest integer which is less than or equal to ( p  - p ' ) /  T. 

As a final remark we should mention that, by using the linear space transformation 
(Cheng 1985) 

Y = (5 ' /5)x 

with 5 = [g( I ) ] " ~ ,  the Lagrangian (1) becomes 
(35) 

In doing this we transform the time-dependent term g( t ) / x2  into the time-independent 
term g'/y2. However, we still need consider the case of M( t ) g (  t )  = K = M'g' ,  in order 
to transform the Lagrangian (36) into the solvable form 

with H(y, t )  = M'iy'/25. We will investigate the problem with more general space 
and time transformations and will report the results in due course. 
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